Processing math: 20%
  • 1 Example 1
  • 2 Example 2
  • 3 Example 3
    • 3.1 Derivation of Cramer’s rule:
  • 4 Example 4
  • 5 Example 5
  • 6 Example 6
  • 7 Example 7
  • 8 Example 8
  • 9 Exercise
    • 9.1 Question 1
    • 9.2 Question 2
    • 9.3 Question 3
    • 9.4 Question 4
  • 10 Solution
    • 10.1 Question 1
      • 10.1.1
      • 10.1.2
      • 10.1.3
      • 10.1.4
    • 10.2 Question 2
      • 10.2.1
      • 10.2.2
      • 10.2.3
      • 10.2.4
    • 10.3 Question 3
      • 10.3.1 3.1
      • 10.3.2 3.2
      • 10.3.3 3.3
      • 10.3.4 3.4
    • 10.4 Question 4
      • 10.4.1
      • 10.4.2
      • 10.4.3
      • 10.4.4

Modelling Data using Functions

Learning Outcomes

After learning through these examples, you will be able to:

  • Apply the principle of least squares.
  • Use the procedure for fitting any curve or functional relationship.
  • Calculate the residuals.
  • Fit a straight line to the given data.
  • Fit a second-degree parabola to the given data.
  • Fit a power curve Y=aXb to the given data.
  • Fit exponential curves of the forms Y=abX and Y = aeX.
  • Visualize the data using a scatter plot and the best-fitted line/curve in the same figure.
  • Use the R built-in function lm to check your numerical computations.
  • Learn R code to import the data, plot the figures, and use the R built-in functions.

Learning Modes

  • The first eight worked examples demonstrate the principle of least squares through a procedural learning approach. These examples include the best-fitting linear, second-degree, power curve, and exponential curve forms.

  • In a multiple-choice format, you will engage with various interactive elements, such as buttons to click and select, as well as options to rearrange boxes in a logical flow. Four questions are designed to test your understanding and application of modeling data using these functions. A timer will also track how long it takes you to solve these problems.

  • At the end of this section, suggested solutions for the four problems will be provided for you to check your answers.

1 Example 1

Find a straight line that best fits the following data:

x1611162026y131617232431 Solution

Let the straight line be given by the equation Y=a+bX. To determine the values of a and b for this line, we use the normal equations:

ni=1yi=na+bni=1xini=1yixi=ani=1xi+bni=1x2i

can be written as

y=na+bxyx=ax+bx2

We need to calculate y, x, xy, and x2, which can be obtained from the following table:

ixyx2xy11131132616369631117121187416232563685202440048062631676806n=6x=80y=124x2=1490xy=1950

For example, x=6i=1xi=x1+x2+x3+x4+x5+x6=1+6+11+16+20+26=80, y=6i=1yi=y1+y2+y3+y4+y5+y6=13+16+17+23+24+31=124, y=6i=1x2i=x21+x22+x23+x24+x25+x26=12+62+112+162+202+262=1+36+121+256+400+676=1490, and xy=6i=1xiyi=x1y1+x2y2+x3y3+x4y4+x5y5+x6y6=13+96+187+368+480+806=1950

By substituting the values of y, x, xy, and x2 into the normal equations, we obtain:

124=6a+80b(1)1950=80a+1490b(2) Now we solve equations (1) and (2).

Multiplying equation (1) by 80 and equation (2) by 6, i.e.

124=6a+80b×801950=80a+1490b×6 we have 9920=480a+6400b(3)11700=480a+8940b(4)

Subtracting (3) from (4), we obtain

1780=2540bb=1780/2540=0.7008

By substituting the value of b in equation (2), we have

24=6a+80×0.7008124=6a+56.06467.936=6aa=11.3227

with these values for a and b, the equation for the line of best fit is: Y=11.3227+0.7008X.

X Y
1 13
6 16
11 17
16 23
20 24
26 31
## 
## Call:
## lm(formula = Y ~ X, data = data)
## 
## Residuals:
##       1       2       3       4       5       6 
##  0.9764  0.4724 -2.0315  0.4646 -1.3386  1.4567 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 11.32283    1.17618   9.627 0.000651 ***
## X            0.70079    0.07464   9.389 0.000717 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.536 on 4 degrees of freedom
## Multiple R-squared:  0.9566, Adjusted R-squared:  0.9457 
## F-statistic: 88.16 on 1 and 4 DF,  p-value: 0.0007169

2 Example 2

Find a straight line that best fits the following data:

x678911y54321

Solution

Let the straight line be given by the equation Y=a+bX. To determine the values of a and b for this line, we use the normal equations:

ni=1yi=na+bni=1xini=1yixi=ani=1xi+bni=1x2i can be written as

y=na+bxyx=ax+bx2

We need to calculate y, x, xy, and x2, which can be obtained from the following table:

ixyx2xy1653630274492838364244928118511112111n=5x=41y=15x2=351xy=111

By substituting the values of y, x, xy, and x2 into the normal equations, we obtain:

15=5a+41b(1)111=41a+351b(2)

Now we solve equations (1) and (2).

Multiplying equation (1) by 41 and equation (2) by 5, i.e.

15=5a+41b×41111=41a+351b×5

we have 615=205a+168b(3)555=205a+1755b(4)

Subtracting (3) from (4), we obtain

60=74bb=60/74=0.8108

By substituting the value of b in equation (2), we have 15=5a+41×(0.8108)15=5a33.2428a=9.6486

with these values for a and b, the equation for the line of best fit is: Y=9.64860.8108X.

X Y
6 5
7 4
8 3
9 2
11 1
## 
## Call:
## lm(formula = Y ~ X, data = data)
## 
## Residuals:
##        1        2        3        4        5 
##  0.21622  0.02703 -0.16216 -0.35135  0.27027 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  9.64865    0.65370   14.76 0.000675 ***
## X           -0.81081    0.07802  -10.39 0.001901 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3002 on 3 degrees of freedom
## Multiple R-squared:  0.973,  Adjusted R-squared:  0.964 
## F-statistic:   108 on 1 and 3 DF,  p-value: 0.001901

3 Example 3

Find a straight line that best fits the following data:

YearTwitter users11.006811.258511.5010111.7511712.75185

Solution

Let the straight line be given by the equation Y=a+bX. To determine the values of a and b for this line, we use the normal equations:

ni=1yi=na+bni=1xini=1yixi=ani=1xi+bni=1x2i

can be written as

y=na+bxyx=ax+bx2 We need to calculate y, x, xy, and x2, which can be obtained from the following table:

ixyx2xy11168121748211.2585126.5625956.25311.5101132.251161.5411.75117138.06251374.75512.75185162.56252358.75n=5x=58.25y=556x2=680.4375xy=6599.25

By substituting the values of y, x, xy, and x2 into the normal equations, we obtain:

556=5a+58.25b(1)6599.25=58.25a+680.4375b(2)

We will now solve equations (1) and (2) using Cramer’s rule. Let us proceed with the calculations:

a=det

and

b = \dfrac{\det \left(\begin{array}{cc} 5 & 556 \\ 58.25 & 6599.25 \end{array} \right)}{\det \left(\begin{array}{cc}5 & 58.25 \\ 58.25 & 680.4375 \end{array} \right)} = 66.7671

with these values for a and b, the equation for the line of best fit is: Y=-666.6370+66.7671 X.

Year Users
11.00 68
11.25 85
11.50 101
11.75 117
12.75 185
## 
## Call:
## lm(formula = Users ~ Year, data = data)
## 
## Residuals:
##       1       2       3       4       5 
##  0.1986  0.5068 -0.1849 -0.8767  0.3562 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -666.6370     5.5204  -120.8 1.25e-06 ***
## Year          66.7671     0.4732   141.1 7.85e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6393 on 3 degrees of freedom
## Multiple R-squared:  0.9998, Adjusted R-squared:  0.9998 
## F-statistic: 1.991e+04 on 1 and 3 DF,  p-value: 7.85e-07

3.1 Derivation of Cramer’s rule:

Let us start with:

\begin{align*} \displaystyle ax+by & =u \\ \displaystyle cx+dy & =v \end{align*}

Multiplying both sides of the first equation by c and both sides of the second equation by a, then subtracting, we find that (ad−bc)y=av−uc. Assuming that the determinant ad−bc is not 0, we find that y = \dfrac{av - uc}{ad - bc} = \dfrac{\det \left(\begin{array}{cc}a & u \\ c & v \end{array} \right)}{\det \left(\begin{array}{cc}a & b \\ c & d \end{array} \right)} = \dfrac{ \left|\begin{array}{cc}a & u \\ c & v \end{array} \right|}{ \left|\begin{array}{cc}a & b \\ c & d \end{array} \right|}

Multiplying both sides of the first equation by d and both sides of the second equation by b, then subtracting, we find that (ad−bc)x=ud−vb. Assuming that the determinant ad−bc is not 0, we find that x = \dfrac{ud−vb}{ad - bc} = \dfrac{\det \left(\begin{array}{cc}u & b \\ v & d \end{array} \right)}{\det \left(\begin{array}{cc}a & b \\ c & d \end{array} \right)} = \dfrac{ \left| \begin{array}{cc}u & b \\ v & d \end{array} \right|}{ \left|\begin{array}{cc}a & b \\ c & d \end{array} \right|}

4 Example 4

Fit a second-degree parabola to the following data:

\begin{array}{c|cccccccccccc} x & y \\ \hline 0 & 1 \\ 1 & 3 \\ 2 & 4 \\ 3 & 5 \\ 4 & 6 \\ \hline \end{array}

Solution

Let Y = a+ bX + cX^2 be the second-degree parabola, and we have to determine a, b and c. Normal equations for the second-degree parabola are

\begin{array}{ccccccccccccc} \displaystyle \sum y & = & \displaystyle na & + & \displaystyle b \sum x & + & \displaystyle c \sum x^2 \\ \displaystyle \sum xy & = & \displaystyle a \sum x & + & \displaystyle b \sum x^2 & + & \displaystyle c \sum x^3 \\ \displaystyle \sum x^2y & = & \displaystyle a \sum x^2 & + & \displaystyle b \sum x^3 & + & \displaystyle c \sum x^4 \\ \end{array}

To solve the above normal equations, we need \displaystyle \sum y, \displaystyle \sum x, \displaystyle \sum xy, \displaystyle \sum x^2 y, \displaystyle \sum x^2, \displaystyle \sum x^3, and \displaystyle \sum x^4, which are obtained from the following table:

\begin{array}{ccccccccc} i & x & y & xy & x^2 & x^2y & x^3 & x^4 \\ \hline 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 2 & 1 & 3 & 3 & 1 & 3 & 1 & 1 \\ 3 & 2 & 4 & 8 & 4 & 16 & 8 & 16 \\ 4 & 3 & 5 & 15 & 9 & 45 & 27 & 81 \\ 5 & 4 & 6 & 24 & 16 & 96 & 64 & 256 \\ \hline n = 5& \displaystyle \sum x = 10 & \displaystyle \sum y = 19 & \displaystyle \sum xy = 50 & \displaystyle \sum x^2 = 30 & \displaystyle \sum x^2y = 160 & \displaystyle \sum x^3 = 100 & \displaystyle \sum x^4 = 354\\ \hline \end{array}

Substituting the values of \displaystyle \sum y, \sum x, \displaystyle \sum xy, \displaystyle \sum x^2 y, $x^2 $, \sum x^3, and \displaystyle \sum x^4 into the above normal equations, we have:

\begin{array}{ccccccccccccc} \displaystyle \sum y & = & \displaystyle na & + & \displaystyle b \sum x & + & \displaystyle c \sum x^2 \\ \displaystyle \sum xy & = & \displaystyle a \sum x & + & \displaystyle b \sum x^2 & + & \displaystyle c \sum x^3 \\ \displaystyle \sum x^2y & = & \displaystyle a \sum x^2 & + & \displaystyle b \sum x^3 & + & \displaystyle c \sum x^4 \\ \end{array} \begin{array}{ccccccccccccc} 19 & = & 5 a & + & 10 b & + & 30 c & & (1) \\ 50 & = & 10 a & + & 30 b & + & 100 c & & (2) \\ 160 & = & 30 a & + & 100 b & + & 354 c & & (3) \\ \end{array}

Now, we solve equations (1), (2) and (3).

Multiplying equation (1) by 2, we get

\begin{array}{ccccccccccccc} 38 & = & 10 a &+& 20 b &+& 60 c && (4) \end{array}

Subtracting equation (4) from equation (2), we get

\begin{array}{ccccccccccccc} 50 & = & 10 a & + & 30 b & + & 100 c & & (2) \\ 38 & = & 10 a & + & 20 b & + & 60 c & & (4) \\ \hline 12 & = & 0 a & + & 10 b & + & 40 c & & (5) \\ \end{array}

Multiplying equation (2) by 3, we get

\begin{array}{ccccccccccccc} 150 & = & 30 a &+& 90 b &+& 300 c && (6) \end{array}

Subtracting equation (6) from equation (3), we get

\begin{array}{ccccccccccccc} 160 & = & 30 a & + & 100 b & + & 354 c & & (3) \\ 150 & = & 30 a & + & 90 b & + & 300 c & & (6)\\ \hline 10 & = & 0 a & + & 10 b & + & 54 c & & (7) \\ \end{array}

Now we solve equation (5) and (7).

Subtracting equation (5) from equation (7), we get

\begin{array}{ccccccccccccc} 12 & = & 0 a & + & 10 b & + & 40 c & & (5) \\ 10 & = & 0 a & + & 10 b & + & 54 c & & (7) \\ \hline 2 & = & & & 0 b & - & 14 c & & \\ \end{array}

\begin{array}{cclllllllllllll} & 2 & = & - 14c \\ & c& = & -2/14 \\ \Rightarrow & c& = & -0.1429 \\ \end{array}

Substituting the value of \mathrm{c} in equation (7), we get

\begin{array}{ccclllllllllll} & 10 & = & 10 b &+ & 54 (-0.1429 ) \\ & 10 & = & 10 b &- & 7.7166 \\ & 10 b & = & 10 &+ & 7.7166 \\ \Rightarrow & b & = & 1.77166 \\ \end{array}

Substituting the value of b and a in equation (1), we get

\begin{array}{ccccccccccccc} & 19 & = & 5 a & + & 10 (1.77166) & + & 30 (-0.1429) \\ & 19 & = & 5 a & + & 17.717 & - & 4.287 \\ \Rightarrow & a & = & 1.114 \end{array}

Thus, the second degree of parabola of best fit is

Y=1.114+1.7717 X-0.1429 X^{2}

X Y
0 1
1 3
2 4
3 5
4 6
## 
## Call:
## lm(formula = Y ~ X + I(X^2), data = data)
## 
## Residuals:
##        1        2        3        4        5 
## -0.11429  0.25714 -0.08571 -0.14286  0.08571 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)  1.11429    0.22497   4.953   0.0384 *
## X            1.77143    0.26650   6.647   0.0219 *
## I(X^2)      -0.14286    0.06389  -2.236   0.1548  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.239 on 2 degrees of freedom
## Multiple R-squared:  0.9923, Adjusted R-squared:  0.9846 
## F-statistic: 128.5 on 2 and 2 DF,  p-value: 0.007722

5 Example 5

Fit the power curve Y = a X^b to the following data:

\begin{array}{c|cccccccccccc} x & y \\ \hline 6 & 9 \\ 2 & 11 \\ 10 & 12 \\ 5 & 8 \\ 8 & 7 \\ \hline \end{array}

Solution

Let the power curve be Y=aX^b, and the normal equations for estimating a and b are:

\begin{array}{ccccccccccccc} \displaystyle \sum u & = & n A & + & \displaystyle b\sum v \\ \displaystyle \sum uv & = & \displaystyle A \sum v & + & \displaystyle b \sum v^{2} \end{array}

where u=\log y, v= \log x, and A=\log a.

Note: Here we are using \log with base 10.

To find the values of a and b from the above normal equations, we require \displaystyle \sum u, \displaystyle \sum v, \displaystyle \sum uv, and \displaystyle \sum v^2, which are calculated in the following table:

\begin{array}{ccccccccc} i & x & y & u=\log y & v=\log x & uv & v^2 \\ \hline 1 & 6 & 9 & 0.954242509 & 0.77815125 & 0.742545002 & 0.605519368 \\ 2 & 2 & 11 & 1.041392685 & 0.301029996 & 0.313490435 & 0.090619058 \\ 3 & 10 & 12 & 1.079181246 & 1 & 1.079181246 & 1 \\ 4 & 5 & 8 & 0.903089987 & 0.698970004 & 0.631232812 & 0.488559067 \\ 5 & 8 & 7 & 0.84509804 & 0.903089987 & 0.763199578 & 0.815571525 \\ \hline n = 5& \displaystyle \sum x = 31 & \displaystyle \sum y = 47 & \displaystyle \sum u = 4.823004468 & \displaystyle \sum v= 3.681241237 & \displaystyle \sum uv = 3.529649074 & \displaystyle \sum v^2 = 3.000269018 \\ \hline \end{array}

Substituting the values \displaystyle \sum u=4.8230, \displaystyle \sum v =3.6812, \displaystyle \sum uv =3.5296 and \displaystyle \sum v^{2}=3.0003 into the above normal equations, we obtain:

\begin{array}{ccccccccccccc} 4.8230 & = & 5 A & + & 3.6812 b & & (1) \\ 3.5296 & = & 3.6812 A & + & 3.0003 b & & (2) \end{array}

Now, we solve the equation (1) and equation (2).

Multiplying equation (1) by 3.6812 and equation (3) by 5, i.e.,

\begin{array}{cccllllllllllc} 4.8230 & = 5 A & + & 3.6812 b && (1) \times 3.6812 \\ 3.5296 & = 3.6812 A & + & 3.0003 b && (2) \times 5 \end{array}

we have

\begin{array}{ccccccccccccc} 17.7544 & = & 18.4060 A & + & 13.5512 b & & (3) \\ 17.6480 & = & 18.4060 A & + & 15.0015 b & & (4) \end{array}

Subtracting equation (4) from equation (3), we have

\begin{array}{ccccccccccccc} & 0.1064 & = & -1.4503 b \\ \Rightarrow & b & = & -0.0734 \end{array}

Substituting the value of b in equation (1), we get

\begin{array}{ccccccccccccc} 4.8230 & = & 5 A & + & 3.6812 (-0.0734) \\ A & = & 1.0186 \end{array}

Now a = \log^{-1} A= \log^{-1} (1.0186) = 10^{1.0186} = 10.4376

Thus, the power curve of the best fit is Y=10.4376 X^{-0.0734}.

X Y
6 9
2 11
10 12
5 8
8 7
## 
## Call:
## lm(formula = log10(Y) ~ log10(X), data = data)
## 
## Residuals:
##         1         2         3         4         5 
## -0.007283  0.044852  0.133936 -0.064247 -0.107259 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  1.01863    0.15679   6.497   0.0074 **
## log10(X)    -0.07339    0.20240  -0.363   0.7410   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.109 on 3 degrees of freedom
## Multiple R-squared:  0.04198,    Adjusted R-squared:  -0.2774 
## F-statistic: 0.1315 on 1 and 3 DF,  p-value: 0.741
## (Intercept) 
##    10.43836
##    log10(X) 
## -0.07338735

6 Example 6

Fit the power curve Y = a X^b to the following data:

\begin{array}{c|cccccccccccc} x & y \\ \hline 0.135 & 22000 \\ 0.67 & 13000 \\ 2.45 & 8000 \\ 75 & 2550 \\ 1775 & 900 \\ \hline \end{array}

Solution

Let the power curve be Y=aX^b, and the normal equations for estimating a and b are:

\begin{array}{ccccccccccccc} \displaystyle \sum u & = & n A & + & \displaystyle b\sum v \\ \displaystyle \sum uv & = & \displaystyle A \sum v & + & \displaystyle b \sum v^{2} \end{array}

where u=\log y, v= \log x, and A=\log a.

Note: Here we are using \log with base 10.

To find the values of a and b from the above normal equations, we require \displaystyle \sum u, \displaystyle \sum v, \displaystyle \sum uv, and \displaystyle \sum v^2, which are calculated in the following table:

\begin{array}{ccccccccc} i & x & y & u=\log y & v=\log x & uv & v^2 \\ \hline 1 & 0.135 & 22000 & 4.342422681 & -0.869666232 & -3.776458368 & 0.756319354 \\ 2 & 0.67 & 13000 & 4.113943352 & -0.173925197 & -0.715518409 & 0.030249974 \\ 3 & 2.45 & 8000 & 3.903089987 & 0.389166084 & 1.518950247 & 0.151450241 \\ 4 & 75 & 2550 & 3.40654018 & 1.875061263 & 6.387471535 & 3.515854741 \\ 5 & 1775 & 900 & 2.954242509 & 3.249198357 & 9.598919909 & 10.55728997 \\ \hline n = 5& \displaystyle \sum x = 1853.255 & \displaystyle \sum y = 46450 & \displaystyle \sum u = 18.72023871 & \displaystyle \sum v= 4.469834276 & \displaystyle \sum uv = 13.01336491 & \displaystyle \sum v^2 = 15.01116428 \\ \hline \end{array}

Substituting the values of \displaystyle \sum u=18.72023871, \displaystyle \sum v=4.469834276,\sum uv= 13.01336491 and \displaystyle \sum v^2=15.01116428 into the above normal equations, we obtain:

\begin{array}{ccccccccccccc} 1853.255 & = & 5 A & + & 4.469834276 b & & (1) \\ 13.01336491 & = & 4.469834276 A & + & 15.01116428 b & & (2) \end{array}

These two equations can be solved for A and b using Cramer’s rule:

A = \dfrac{\left| \begin{array}{cc} \color{red}{ \sum u} & \sum v \\ \color{red}{\sum uv} & \sum v^{2} \end{array} \right|} {\left| \begin{array}{cc} n & \sum v \\ \sum v & \sum v^{2} \end{array} \right|} = \dfrac{\left| \begin{array}{cc} \color{red}{18.72023871} & 4.469834276 \\ \color{red}{13.01336491} & 15.01116428 \end{array} \right|} {\left| \begin{array}{cc} 5 & 4.469834276\\ 4.469834276 & 15.01116428 \end{array} \right|} = 4.0461

Now a = \log^{-1} (A) = \log^{-1} (4.0461) =10^{4.0461} = 11120 and

b = \dfrac{\left| \begin{array}{cc} 5 & \color{red}{18.72023871} \\ 4.469834276 & \color{red}{13.01336491} \end{array} \right|} {\left| \begin{array}{cc} 5 & 4.469834276\\ 4.469834276 & 15.01116428 \end{array} \right|} = -0.3379

Thus, the power curve of the best fit is Y=11120 X^{-0.3379}.

Mass RPM
0.135 22000
0.670 13000
2.450 8000
75.000 2550
1775.000 900
## 
## Call:
## lm(formula = log10(RPM) ~ log10(Mass), data = data)
## 
## Residuals:
##         1         2         3         4         5 
##  0.002468  0.009070 -0.011523 -0.006010  0.005994 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.046107   0.005161   784.0 4.58e-09 ***
## log10(Mass) -0.337886   0.002979  -113.4 1.51e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.009886 on 3 degrees of freedom
## Multiple R-squared:  0.9998, Adjusted R-squared:  0.9997 
## F-statistic: 1.287e+04 on 1 and 3 DF,  p-value: 1.51e-06
## [1] 12.090791  6.673574  6.342661  6.156732  6.028124
## (Intercept) 
##    10.43836
##    log10(X) 
## -0.07338735

7 Example 7

Fit the exponential curve Y=ab^X to the following data:

\begin{array}{c|cccccccccccc} x & y \\ \hline 2 & 1 \\ 4 & 3 \\ 6 & 6 \\ 8 & 12 \\ 10 & 24 \\ \hline \end{array}

Solution

Let the exponential curve be Y=ab^X, and the normal equations for estimating a and b are

\begin{array}{ccccccccccccc} \displaystyle \sum u & = & n A & + & \displaystyle B \sum x \\ \displaystyle \sum ux & = & \displaystyle A \sum x & + & \displaystyle B \sum x^{2} \end{array}

where a=\log^{-1}(A)= 10^{A} and b= \log^{-1}(B)=10^{B}.

Note: Here we are using \log with base 10.

To find the values of a and b from the above normal equations, we require \displaystyle \sum u, \displaystyle \sum x, \displaystyle \sum ux and \displaystyle \sum x^{2}, which are being calculated in the following table:

\begin{array}{ccccccccc} i & x & y & u=\log y & ux & x^2 \\ \hline 1 & 2 & 1 & 0 & 0 & 4 \\ 2 & 4 & 3 & 0.477121255 & 1.908485019 & 16 \\ 3 & 6 & 6 & 0.77815125 & 4.668907502 & 36 \\ 4 & 8 & 12 & 1.079181246 & 8.633449968 & 64 \\ 5 & 10 & 24 & 1.380211242 & 13.80211242 & 100 \\ \hline n = 5& \displaystyle \sum x = 30 & \displaystyle \sum y = 46 & \displaystyle \sum u = 3.714664993 & \displaystyle \sum ux = 29.01295495 & \displaystyle \sum x^2 = 220 \\ \hline \end{array}

Substituting the values of \displaystyle \sum u , \displaystyle \sum x, \sum ux and \displaystyle \sum x^{2} in the above normal equations, we get

\begin{array}{ccccccccccccc} 3.7147 & = & 5 A & + & 30 B & & (1) \\ 29.013 & = & 30 A & + & 220 B & & (2) \end{array}

Now, we solve the equation (1) and equation (2).

Multiplying equation (1) by 6, i.e.,

\begin{array}{ccccccccccccc} 3.7147 & = & 5 A &+& 30 B & & (1) \times 6 \\ \end{array}

we have

\begin{array}{ccccccccccccc} 22.2882 & = & 30 A & + & 180 B & & (3) \\ 29.013 & = & 30 A & + & 220 B & & (2) \end{array}

Subtracting equation (2) from equation (3), we have

\begin{array}{ccccccccccccc} & 6.7248 & = & 40 B \\ \Rightarrow & B & = & 0.1681 \end{array}

Substituting the value of B in equation (1), we get

A=-0.26566

Now a = \log^{-1} A= \log^{-1} (-0.26566) = 10^{-0.26566} = 0.5424

and

b = \log^{-1} B= \log^{-1} (0.1681) = 10^{0.1681} = 1.4727

Thus, the exponential curve of the best fit is Y=0.5424(1.4727)^{X}.

X Y
2 1
4 3
6 6
8 12
10 24
## 
## Call:
## lm(formula = log10(Y) ~ X, data = data)
## 
## Residuals:
##          1          2          3          4          5 
## -7.044e-02  7.044e-02  3.522e-02  3.469e-17 -3.522e-02 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.26581    0.06744  -3.942 0.029106 *  
## X            0.16812    0.01017  16.537 0.000481 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.0643 on 3 degrees of freedom
## Multiple R-squared:  0.9891, Adjusted R-squared:  0.9855 
## F-statistic: 273.5 on 1 and 3 DF,  p-value: 0.0004813
## [1]  1.176079  2.550849  5.532647 12.000000 26.027323
## (Intercept) 
##   0.5422359
##        X 
## 1.472733

8 Example 8

Fit an exponential curve Y = a e^{bX} to the following data:

\begin{array}{c|cccccccccccc} x & y \\ \hline 0 & 1481.66 \\ 2 & 2333.32 \\ 4 & 3501.39 \\ 6 & 5938.71 \\ 8 & 8838.60 \\ \hline \end{array}

Solution

Let the exponential curve be Y=a e^{bX}, and the normal equations for estimating a and b are

\begin{array}{ccccccccccccc} \displaystyle \sum u & = & n A & + & \displaystyle B \sum x \\ \displaystyle \sum ux & = & \displaystyle A \sum x & + & \displaystyle B \sum x^{2} \end{array}

where a=\log^{-1}(A) and b= \dfrac{B}{\log e}.

Note: Here we are using \log with base 10.

To find the values of a and b from the above normal equations, we require \displaystyle \sum u, \sum x, \displaystyle \sum ux and \displaystyle \sum x^{2}, which are being calculated in the following table:

\begin{array}{ccccccccc} i & x & y & u=\log y & ux & x^2 \\ \hline 1 & 0 & 1481.66 & 3.170748557 & 0 & 0 \\ 2 & 2 & 2333.32 & 3.367974304 & 6.735948607 & 4 \\ 3 & 4 & 3501.39 & 3.544240487 & 14.17696195 & 16 \\ 4 & 6 & 5938.71 & 3.773692118 & 22.64215271 & 36 \\ 5 & 8 & 8838.6 & 3.94638348 & 31.57106784 & 64 \\ \hline n=5 & \displaystyle \sum x = 20 & \displaystyle \sum y = 22093.68 & \displaystyle \sum u = 17.80303895 & \displaystyle \sum ux = 75.1261311 & \displaystyle \sum x^2 = 120 \\ \hline \end{array}

Substituting the values of \displaystyle \sum u , \sum x , \sum ux and \displaystyle \sum x^{2} in the above normal equations, we get

\begin{array}{ccccccccccccc} 17.80303895 & = & 5 A & + & 20 B & (1) \\ 75.1261311 & = & 20 A & + & 120 B & (2) \end{array}

By solving these equations as simultaneous equations, we get

\begin{array}{ccccccccccccc} A & =& 3.1692 \\ B & = & 0.09784 \end{array}

Now a = \log^{-1} A= \log^{-1} (3.1692) = 10^{3.1692} = 1476.4

and

b = \dfrac{0.09784}{\log 2.71828} = \dfrac{0.09784}{0.43429} = 0.2253

Thus, the exponential curve of the best fit is Y=1476.4 \cdot e^{0.2253X}.

X Y
0 1481.66
2 2333.32
4 3501.39
6 5938.71
8 8838.60
## 
## Call:
## lm(formula = log(Y) ~ X, data = data)
## 
## Residuals:
##         1         2         3         4         5 
##  0.003542  0.007058 -0.037687  0.040032 -0.012945 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 7.297376   0.025506  286.10 9.42e-08 ***
## X           0.225307   0.005206   43.27 2.72e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.03293 on 3 degrees of freedom
## Multiple R-squared:  0.9984, Adjusted R-squared:  0.9979 
## F-statistic:  1873 on 1 and 3 DF,  p-value: 2.716e-05
## [1] 1476.421 2316.909 3635.865 5705.669 8953.757
## (Intercept) 
##    1476.421
##         X 
## 0.2253065

9 Exercise



9.1 Question 1

Consider the following data set: \begin{array}{c|cccccccccccc} x & y \\ \hline 2 & 1 \\ 4 & 2 \\ 6 & 3 \\ 8 & 4 \\ 10 & 5 \\ \hline \end{array}

9.2 Question 2

Consider fit the power curve Y = a X^b to the following data: \begin{array}{c|cccccccccccc} x & y \\ \hline 5 & 2 \\ 6 & 5 \\ 9 & 8 \\ 8 & 11 \\ 11 & 15 \\ \hline \end{array}

9.3 Question 3

Consider fit the power curve Y = ab^X to the following data: \begin{array}{c|cccccccccccc} x & y \\ \hline 1 & 8 \\ 2 & 15 \\ 3 & 33 \\ 4 & 65 \\ 5 & 130 \\ \hline \end{array}

9.4 Question 4

Consider fit the Exponential curve Y = ae^{bX} to the following data: \begin{array}{c|cccccccccccc} x & y \\ \hline 1 & 5 \\ 2 & 10 \\ 4 & 30 \\ \hline \end{array}



10 Solution

10.1 Question 1

Fit a second-degree parabola to the following data:

\begin{array}{c|cccccccccccc} x & y \\ \hline 2 & 1 \\ 4 & 2 \\ 6 & 3 \\ 8 & 4 \\ 10 & 5 \\ \hline \end{array}

Let Y = a+ bX + cX^2 be the second degree parabola and we have to determine a, b and c. The normal equations for the second-degree parabola are:

\begin{array}{ccccccccccccc} \displaystyle \sum y & = & na & + & \displaystyle b \sum x & + & \displaystyle c \sum x^2 \\ \displaystyle \sum xy & = & \displaystyle a \sum x & + & \displaystyle b \sum x^2 & + & \displaystyle c \sum x^3 \\ \displaystyle \sum x^2y & = & \displaystyle a \sum x^2 & + & \displaystyle b \sum x^3 & + & \displaystyle c \sum x^4 \\ \end{array}

To solve above normal equations, we need \displaystyle \sum y, \displaystyle \sum x, \displaystyle \sum xy, \displaystyle \sum x^2 y, \displaystyle \sum x^2, \displaystyle \sum x^3 and \displaystyle \sum x^4, which are obtained from following table:

\begin{array}{ccccccccc} i & x & y & xy & x^2 & x^2y & x^3 & x^4 \\ \hline 1 & 2 & 1 & 2 & 4 & 4 & 8 & 16 \\ 2 & 4 & 2 & 8 & 16 & 32 & 64 & 256 \\ 3 & 6 & 3 & 18 & 36 & 108 & 216 & 1296 \\ 4 & 8 & 4 & 32 & 64 & 256 & 512 & 4096 \\ 5 & 10 & 5 & 50 & 100 & 500 & 1000 & 10000 \\ n = 5& \displaystyle \sum x = 30 & \displaystyle \sum y = 15 & \displaystyle \sum xy = 110 & \displaystyle \sum x^2 = 220 & \displaystyle \sum x^2y = 900 & \displaystyle \sum x^3 = 1800 & \displaystyle \sum x^4 = 15664 \\ \hline \end{array}

Substituting the values of \displaystyle \sum y, \sum x, \displaystyle \sum xy, \displaystyle \sum x^2 y, \displaystyle \sum x^2,\sum x^{3} and \displaystyle \sum x^{4} into the above normal equations, we have

\begin{array}{ccccccccccccc} \displaystyle \sum y & = & na & + & \displaystyle b \sum x & + & \displaystyle c \sum x^2 \\ \displaystyle \sum xy & = & \displaystyle a \sum x & + & \displaystyle b \sum x^2 & + & \displaystyle c \sum x^3 \\ \displaystyle \sum x^2y & = & \displaystyle a \sum x^2 & + & \displaystyle b \sum x^3 & + & \displaystyle c \sum x^4 \\ \end{array}

\begin{array}{ccccccccc} 15 & = & 5 a & + & 30 b & + & 220 c & & (1) \\ 110 & = & 30 a & + & 220 b & + & 1800 c & & (2) \\ 900 & = & 220 a & + & 1800 b & + & 15664 c & & (3) \\ \end{array}

The values of a, b and c are obtained by solving equations using Cramer’s rule:

a= \dfrac{\left| \begin{array}{cccc} \color{red}{\sum y} & \sum x & \sum x^{2} \\ \color{red}{\sum xy} & \sum x^{2} & \sum x^{3} \\ \color{red}{\sum x^{2}y} & \sum x^{3} & \sum x^{4} \end{array} \right|}{\left| \begin{array}{cccc} n & \sum x & \sum x^{2} \\ \sum x & \sum x^{2} & \sum x^{3} \\ \sum x^{2} & \sum x^{3} & \sum x^{4} \end{array} \right|}

b= \dfrac{\left| \begin{array}{cccc} n & \color{red}{\sum y} & \sum x^{2} \\ \sum x & \color{red}{\sum xy} & \sum x^{3} \\ \sum x^{2} & \color{red}{\sum x^{2}y} & \sum x^{4} \end{array} \right|}{\left| \begin{array}{cccc} n & \sum x & \sum x^{2} \\ \sum x & \sum x^{2} & \sum x^{3} \\ \sum x^{2} & \sum x^{3} & \sum x^{4} \end{array} \right|} and c= \dfrac{\left| \begin{array}{cccc} n & \sum x & \color{red}{\sum y} \\ \sum x & \sum x^{2} & \color{red}{\sum xy}\\ \sum x^{2} & \sum x^{3} & \color{red}{\sum x^{2}y} \end{array} \right|}{\left| \begin{array}{cccc} n & \sum x & \sum x^{2} \\ \sum x & \sum x^{2} & \sum x^{3} \\ \sum x^{2} & \sum x^{3} & \sum x^{4} \end{array} \right|} In order to further solve a, b and c, we need to know how to solve a three-by-three determinant.

Consider the determinant

{\left| \begin{array}{cccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right|} The formula to solve a three-by-three determinant using the co-factor expansion is as follows:

{\left| \begin{array}{cccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right|} = a \left| \begin{array}{cccc} e & f \\ h & i \end{array} \right| - b \left| \begin{array}{cccc} d & f \\ g & i \end{array} \right| + c \left| \begin{array}{cccc} d & e \\ g & h \end{array} \right|

With these values of a, b and c, the second degree parabola Y=a+bX+cX^{2} is the best fit.

a = \dfrac{\left| \begin{array}{cccc} \color{red}{15} & 30 & 220 \\ \color{red}{110} & 220 & 1800 \\ \color{red}{900} & 1800 & 15664 \end{array} \right|}{\left| \begin{array}{cccc} 5 & 30 & 220 \\ 30 & 220 & 1800 \\ 220 & 1800 & 15664 \end{array} \right|} = 0 \\

Now, we have {\left| \begin{array}{cccc} \color{blue}{15} & \color{blue}{30} & \color{blue}{220} \\ 110 & 220 & 1800 \\ 900 & 1800 & 15664 \end{array} \right|} = \color{blue}{15} \left| \begin{array}{cccc} 220 & 1800 \\ 1800 & 15664 \end{array} \right| - \color{blue}{30} \left| \begin{array}{cccc} 110 & 1800 \\ 900 & 16554 \end{array} \right| + \color{blue}{220} \left| \begin{array}{cccc} 110 & 220 \\ 900 & 1800 \end{array} \right| = 0 and {\left| \begin{array}{cccc} \color{blue}{5} & \color{blue}{30} & \color{blue}{220} \\ 30 & 220 & 1800 \\ 220 & 1800 & 15664 \end{array} \right|} =\color{blue}{5} \left| \begin{array}{cccc} 220 & 1800 \\ 1800 & 15664 \end{array} \right| - \color{blue}{30} \left| \begin{array}{cccc} 110 & 1800 \\ 990 & 16554 \end{array} \right| + \color{blue}{220} \left| \begin{array}{cccc} 110 & 220 \\ 900 & 1800 \end{array} \right| = 44800

b= \dfrac{\left| \begin{array}{cccc} 5 & \color{red}{15} & 220 \\ 30 & \color{red}{110} & 1800 \\ 220 & \color{red}{900} & 15664 \end{array} \right|}{\left| \begin{array}{cccc} 5 & 30 & 220 \\ 30 & 220 & 1800 \\ 220 & 1800 & 15664 \end{array} \right|} = \frac{1}{2} and c= \dfrac{\left| \begin{array}{cccc} 5 & 30 & \color{red}{15} \\ 30 & 220 & \color{red}{110} \\ 220 & 1800 & \color{red}{990} \end{array} \right|}{\left| \begin{array}{cccc} 5 & 30 & 220 \\ 30 & 220 & 1800 \\ 220 & 1800 & 15664 \end{array} \right|} = 0

Thus, the second degree of parabola of best fit is

Y= X/2

10.1.1

A, B

10.1.2

Correct order: 1. Decide the model to fit in the dataset. 2. Find the corresponding summations for the normal function. 3. Using Cramer’s Rule to solve the linear system. 4. Find the determinent of each corresponding matrix and get the values of each coefficients.

10.1.3

0.5

10.1.4

0

10.2 Question 2

Fit the power curve Y = a X^b to the following data:

\begin{array}{c|cccccccccccc} x & y \\ \hline 5 & 2 \\ 6 & 5 \\ 9 & 8 \\ 8 & 11 \\ 11 & 15 \\ \hline \end{array}

Let the power curve be Y=aX^b, and the normal equations for estimating a and b are

\begin{array}{ccccccccccccc} \displaystyle \sum u & = & n A & + & \displaystyle b\sum v \\ \displaystyle \sum uv & = & \displaystyle A \sum v & + & \displaystyle b \sum v^{2} \end{array}

where u=\log y, v= \log x and A=\log a.

Note: Here we are using \log with base 10.

To find the values of a and b from the above normal equations, we require \displaystyle \sum u , \displaystyle \sum v, \displaystyle \sum uv and \displaystyle \sum v^{2} ,which are being calculated in the following table:

\begin{array}{ccccccccc} i & x & y & u=\log y & v=\log x & uv & v^2 \\ \hline 1 & 5 & 2 & 0.301029996 & 0.698970004 & 0.210410937 & 0.488559067 \\ 2 & 6 & 5 & 0.698970004 & 0.77815125 & 0.543904383 & 0.605519368 \\ 3 & 9 & 8 & 0.903089987 & 0.954242509 & 0.861766855 & 0.910578767 \\ 4 & 8 & 11 & 1.041392685 & 0.903089987 & 0.940471306 & 0.815571525 \\ 5 & 11 & 15 & 1.176091259 & 1.041392685 & 1.224772834 & 1.084498725 \\ \hline n = 5& \displaystyle \sum x = 39 & \displaystyle \sum y = 41 & \displaystyle \sum u = 4.120573931 & \displaystyle \sum v= 4.375846436 & \displaystyle \sum uv = 3.781326316 & \displaystyle \sum v^2 = 3.904727452 \\ \hline \end{array}

Substituting the values of \displaystyle \sum u=4.1206, \displaystyle \sum v=4.3759,\sum uv=3.7814 and \displaystyle \sum v^2=3.9048 into the above normal equations, we obtain

\begin{array}{ccccccccc} 4.1206 & = & 5 A & + & 4.3759 b & & (1) \\ 3.7184 & = & 4.3759 A & + & 3.9048 b & & (2) \end{array}

These two equations can be solved for a and b using Cramer’s rule:

A = \dfrac{\left| \begin{array}{cc} \color{red}{ \sum u} & \sum v \\ \color{red}{\sum uv} & \sum v^{2} \end{array} \right|} {\left| \begin{array}{cc} n & \sum v \\ \sum v & \sum v^{2} \end{array} \right|} = \dfrac{\left| \begin{array}{cc} \color{red}{4.1206} & 4.3759 \\ \color{red}{3.7184} & 3.9048 \end{array} \right|} {\left| \begin{array}{cc} 5 & 4.3759 \\ 4.3759 & 3.9048 \end{array} \right|} = −0.4571

Now a = \log^{-1} (A) = \log^{-1} (−0.4571) = 10^{0.3491} = 0.3491 and b = \dfrac{\left| \begin{array}{cc} 5 & \color{red}{4.3759} \\ 4.3759 & \color{red}{3.9048} \end{array} \right|} {\left| \begin{array}{cc} 5 & 4.3759 \\ 4.3759 & 3.9048 \end{array} \right|} = 1.4964

Thus, the power curve of the best fit is Y=0.3491 X^{1.4964}.

10.2.1

C

10.2.2

A, C

10.2.3

3.905

10.2.4

0.0670

10.3 Question 3

Fit the power curve Y = a b^X to the following data:

\begin{array}{c|cccccccccccc} x & y \\ \hline 1 & 8 \\ 2 & 15 \\ 3 & 33 \\ 4 & 65 \\ 5 & 130 \\ \hline \end{array}

Let the exponential curve be Y=ab^x, and the normal equations for estimating a and b are

\begin{array}{ccccccccccccc} \displaystyle \sum u & = & n A & + & \displaystyle B \sum x \\ \displaystyle \sum ux & = & \displaystyle A \sum x & + & \displaystyle B \sum x^{2} \end{array}

where a=\log^{-1}(A) and b= \log^{-1}(B).

Note: Here we are using \log with base 10.

To find the values of a and b from the above normal equations, we require \displaystyle \sum u, \displaystyle \sum x, \displaystyle \sum ux and \displaystyle \sum x^{2}, which are being calculated in the following table:

\begin{array}{ccccccccc} i & x & y & u=\log y & ux & x^2 \\ \hline 1 & 1 & 8 & 0.903089987 & 0.903089987 & 1 \\ 2 & 2 & 15 & 1.176091259 & 2.352182518 & 4 \\ 3 & 3 & 33 & 1.51851394 & 4.55554182 & 9 \\ 4 & 4 & 65 & 1.812913357 & 7.251653427 & 16 \\ 5 & 5 & 130 & 2.113943352 & 10.56971676 & 25 \\ \hline n = 5 & \displaystyle \sum x = 15 & \displaystyle \sum y = 251 & \displaystyle \sum u = 7.524551895 & \displaystyle \sum ux = 25.63218451 & \displaystyle \sum x^2 = 55 \\ \hline \end{array}

Substituting the values of \displaystyle \sum u, \sum x, \sum ux and \displaystyle \sum x^{2} into the above normal equations, we get

\begin{array}{ccccccccc} 7.5246 & = & 5 A & + & 15 B & & (1) \\ 25.6322 & = & 15 A & + & 55 B & & (2) \end{array}

Now, we solve the equation (1) and equation (2).

Multiplying equation (1) by 3, i.e.,

\begin{array}{ccccccccc} 22.5738 & = & 15 A &+& 45 B && (1) \times 3 \\ \end{array}

we have

\begin{array}{ccccccccc} 22.5738 & = & 15 A & +& 45 B && (3) \\ 25.6322 & = & 15 A &+& 55 B && (2) \end{array}

Subtracting equation (2) from equation (3), we have

\begin{array}{ccccccccc} & 3.0584 & = & -10 B \\ \Rightarrow & B & = & -0.30584 \end{array}

Substituting the value of B in equation (1), we get

A=2.4224

Now a = \log^{-1} A= \log^{-1} (2.4224) = 10^{2.4224}=264.5087

and

b = \log^{-1} B= \log^{-1} (-0.30584) = 10^{-0.30584} = 0.4494

Thus, the exponential curve of the best fit is Y=264.5087 \cdot ( 0.4494 )^{X}.

10.3.1 3.1

C

10.3.2 3.2

A

10.3.3 3.3

80.8728

10.3.4 3.4

32811.38

10.4 Question 4

Fit an exponential curve Y = a e^{bX} to the following data:

\begin{array}{c|cccccccccccc} x & y \\ \hline 1 & 5 \\ 2 & 10 \\ 4 & 30 \\ \hline \end{array}

Let the exponential curve be Y=a e^{bX}, and the normal equations for estimating a and b are:

\begin{array}{ccccccccccccc} \displaystyle \sum u & = & n A & + & \displaystyle B \sum x \\ \displaystyle \sum ux & = & \displaystyle A \sum x & + & \displaystyle B \sum x^{2} \end{array}

where a=\log^{-1}(A) and b= \dfrac{B}{\log e}.

Note: Here we are using \log with base 10.

To find the values of a and b from the above normal equations, we require \displaystyle \sum u , \sum x, \displaystyle \sum ux and \displaystyle \sum x^{2}, which are being calculated in the following table:

\begin{array}{ccccccccc} i & x & y & u=\log y & ux & x^2 \\ \hline 1 & 1 & 5 & 0.698970004 & 0.698970004 & 1 \\ 2 & 2 & 10 & 1 & 2 & 4 \\ 3 & 4 & 30 & 1.477121255 & 5.908485019 & 16 \\ \hline n= 3& \displaystyle \sum x = 7 & \displaystyle \sum y = 45 & \displaystyle \sum u = 3.176091259 & \displaystyle \sum ux = 8.607455023 & \displaystyle \sum x^2 = 21 \\ \hline \end{array}

Substituting the values of \displaystyle \sum u , \sum x , \sum ux and \displaystyle \sum x^{2} into the above normal equations, we get

\begin{array}{ccccccccc} 3.1761 & = & 3 A & + & 7 B & & (1) \\ 8.6075 & = & 7 A & + & 21 B & & (2) \end{array}

By solving these equations as simultaneous equations, we get

\begin{array}{ccccccccc} A & = & 0.4604 \\ B & = & 0.2564 \end{array}

Now a = \log^{-1} A= \log^{-1} (0.4604) = 10^{0.4604} = 2.8867

and

b = \dfrac{0.2564}{\log 2.71828} = \dfrac{0.2564}{0.43429} = 0.5904

Thus, the exponential curve of the best fit is Y=2.8867 \cdot e^{0.5904X}.

10.4.1

B

10.4.2

C

10.4.3

0.5904

10.4.4

0.7884