Learning Outcomes
After learning through these examples, you will be able to:
R
built-in function lm
to check your numerical computations.R
code to import the data, plot the figures, and use the R
built-in functions.Learning Modes
The first eight worked examples demonstrate the principle of least squares through a procedural learning approach. These examples include the best-fitting linear, second-degree, power curve, and exponential curve forms.
In a multiple-choice format, you will engage with various interactive elements, such as buttons to click and select, as well as options to rearrange boxes in a logical flow. Four questions are designed to test your understanding and application of modeling data using these functions. A timer will also track how long it takes you to solve these problems.
At the end of this section, suggested solutions for the four problems will be provided for you to check your answers.
Find a straight line that best fits the following data:
x1611162026y131617232431 Solution
Let the straight line be given by the equation Y=a+bX. To determine the values of a and b for this line, we use the normal equations:
n∑i=1yi=na+bn∑i=1xin∑i=1yixi=an∑i=1xi+bn∑i=1x2i
can be written as
∑y=na+b∑x∑yx=a∑x+b∑x2
We need to calculate ∑y, ∑x, ∑xy, and ∑x2, which can be obtained from the following table:
ixyx2xy11131132616369631117121187416232563685202440048062631676806n=6∑x=80∑y=124∑x2=1490∑xy=1950
For example, ∑x=6∑i=1xi=x1+x2+x3+x4+x5+x6=1+6+11+16+20+26=80, ∑y=6∑i=1yi=y1+y2+y3+y4+y5+y6=13+16+17+23+24+31=124, ∑y=6∑i=1x2i=x21+x22+x23+x24+x25+x26=12+62+112+162+202+262=1+36+121+256+400+676=1490, and ∑xy=6∑i=1xiyi=x1y1+x2y2+x3y3+x4y4+x5y5+x6y6=13+96+187+368+480+806=1950
By substituting the values of ∑y, ∑x, ∑xy, and ∑x2 into the normal equations, we obtain:
124=6a+80b(1)1950=80a+1490b(2) Now we solve equations (1) and (2).
Multiplying equation (1) by 80 and equation (2) by 6, i.e.
124=6a+80b×801950=80a+1490b×6 we have 9920=480a+6400b(3)11700=480a+8940b(4)
Subtracting (3) from (4), we obtain
1780=2540b⇒b=1780/2540=0.7008
By substituting the value of b in equation (2), we have
24=6a+80×0.7008124=6a+56.06467.936=6a⇒a=11.3227
with these values for a and b, the equation for the line of best fit is: Y=11.3227+0.7008X.
X | Y |
---|---|
1 | 13 |
6 | 16 |
11 | 17 |
16 | 23 |
20 | 24 |
26 | 31 |
##
## Call:
## lm(formula = Y ~ X, data = data)
##
## Residuals:
## 1 2 3 4 5 6
## 0.9764 0.4724 -2.0315 0.4646 -1.3386 1.4567
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.32283 1.17618 9.627 0.000651 ***
## X 0.70079 0.07464 9.389 0.000717 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.536 on 4 degrees of freedom
## Multiple R-squared: 0.9566, Adjusted R-squared: 0.9457
## F-statistic: 88.16 on 1 and 4 DF, p-value: 0.0007169
# Calculate the predicted Y for a range of X
predicted_values <- predict(
linear_model,
newdata = data.frame(X = seq(min(X),
max(X),
length.out = 5)
)
)
# Plot the data points and the predicted Y values
plot(
data$X,
data$Y,
main = "Y vs. X",
xlab = "X",
ylab = "Y"
)
lines(seq(min(X),
max(X),
length.out = 5),
predicted_values, col = "red"
)
Find a straight line that best fits the following data:
x678911y54321
Solution
Let the straight line be given by the equation Y=a+bX. To determine the values of a and b for this line, we use the normal equations:
n∑i=1yi=na+bn∑i=1xin∑i=1yixi=an∑i=1xi+bn∑i=1x2i can be written as
∑y=na+b∑x∑yx=a∑x+b∑x2
We need to calculate ∑y, ∑x, ∑xy, and ∑x2, which can be obtained from the following table:
ixyx2xy1653630274492838364244928118511112111n=5∑x=41∑y=15∑x2=351∑xy=111
By substituting the values of ∑y, ∑x, ∑xy, and ∑x2 into the normal equations, we obtain:
15=5a+41b(1)111=41a+351b(2)
Now we solve equations (1) and (2).
Multiplying equation (1) by 41 and equation (2) by 5, i.e.
15=5a+41b×41111=41a+351b×5
we have 615=205a+168b(3)555=205a+1755b(4)
Subtracting (3) from (4), we obtain
−60=74b⇒b=−60/74=−0.8108
By substituting the value of b in equation (2), we have 15=5a+41×(−0.8108)15=5a−33.2428⇒a=9.6486
with these values for a and b, the equation for the line of best fit is: Y=9.6486−0.8108X.
X | Y |
---|---|
6 | 5 |
7 | 4 |
8 | 3 |
9 | 2 |
11 | 1 |
##
## Call:
## lm(formula = Y ~ X, data = data)
##
## Residuals:
## 1 2 3 4 5
## 0.21622 0.02703 -0.16216 -0.35135 0.27027
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.64865 0.65370 14.76 0.000675 ***
## X -0.81081 0.07802 -10.39 0.001901 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3002 on 3 degrees of freedom
## Multiple R-squared: 0.973, Adjusted R-squared: 0.964
## F-statistic: 108 on 1 and 3 DF, p-value: 0.001901
# Calculate the predicted Y for a range of X
predicted_values <- predict(
linear_model,
newdata = data.frame(X = seq(min(X),
max(X),
length.out = 5)
)
)
# Plot the data points and the predicted Y values
plot(
data$X,
data$Y,
main = "Y vs. X",
xlab = "X",
ylab = "Y"
)
lines(seq(min(X),
max(X),
length.out = 5),
predicted_values, col = "red"
)
Find a straight line that best fits the following data:
YearTwitter users11.006811.258511.5010111.7511712.75185
Solution
Let the straight line be given by the equation Y=a+bX. To determine the values of a and b for this line, we use the normal equations:
n∑i=1yi=na+bn∑i=1xin∑i=1yixi=an∑i=1xi+bn∑i=1x2i
can be written as
∑y=na+b∑x∑yx=a∑x+b∑x2 We need to calculate ∑y, ∑x, ∑xy, and ∑x2, which can be obtained from the following table:
ixyx2xy11168121748211.2585126.5625956.25311.5101132.251161.5411.75117138.06251374.75512.75185162.56252358.75n=5∑x=58.25∑y=556∑x2=680.4375∑xy=6599.25
By substituting the values of ∑y, ∑x, ∑xy, and ∑x2 into the normal equations, we obtain:
556=5a+58.25b(1)6599.25=58.25a+680.4375b(2)
We will now solve equations (1) and (2) using Cramer’s rule. Let us proceed with the calculations:
a=det
and
b = \dfrac{\det \left(\begin{array}{cc} 5 & 556 \\ 58.25 & 6599.25 \end{array} \right)}{\det \left(\begin{array}{cc}5 & 58.25 \\ 58.25 & 680.4375 \end{array} \right)} = 66.7671
with these values for a and b, the equation for the line of best fit is: Y=-666.6370+66.7671 X.
Year | Users |
---|---|
11.00 | 68 |
11.25 | 85 |
11.50 | 101 |
11.75 | 117 |
12.75 | 185 |
##
## Call:
## lm(formula = Users ~ Year, data = data)
##
## Residuals:
## 1 2 3 4 5
## 0.1986 0.5068 -0.1849 -0.8767 0.3562
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -666.6370 5.5204 -120.8 1.25e-06 ***
## Year 66.7671 0.4732 141.1 7.85e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6393 on 3 degrees of freedom
## Multiple R-squared: 0.9998, Adjusted R-squared: 0.9998
## F-statistic: 1.991e+04 on 1 and 3 DF, p-value: 7.85e-07
# Calculate the predicted Y for a range of X
predicted_values <- predict(
linear_model,
newdata = data.frame(Year = seq(min(Year),
max(Year),
length.out = 5)
)
)
# Plot the data points and the predicted Y values
plot(
data$Year,
data$Users,
main = "Users vs. Year",
xlab = "Year",
ylab = "Users"
)
lines(seq(min(Year),
max(Year),
length.out = 5),
predicted_values, col = "red"
)
Let us start with:
\begin{align*} \displaystyle ax+by & =u \\ \displaystyle cx+dy & =v \end{align*}
Multiplying both sides of the first equation by c and both sides of the second equation by a, then subtracting, we find that (ad−bc)y=av−uc. Assuming that the determinant ad−bc is not 0, we find that y = \dfrac{av - uc}{ad - bc} = \dfrac{\det \left(\begin{array}{cc}a & u \\ c & v \end{array} \right)}{\det \left(\begin{array}{cc}a & b \\ c & d \end{array} \right)} = \dfrac{ \left|\begin{array}{cc}a & u \\ c & v \end{array} \right|}{ \left|\begin{array}{cc}a & b \\ c & d \end{array} \right|}
Multiplying both sides of the first equation by d and both sides of the second equation by b, then subtracting, we find that (ad−bc)x=ud−vb. Assuming that the determinant ad−bc is not 0, we find that x = \dfrac{ud−vb}{ad - bc} = \dfrac{\det \left(\begin{array}{cc}u & b \\ v & d \end{array} \right)}{\det \left(\begin{array}{cc}a & b \\ c & d \end{array} \right)} = \dfrac{ \left| \begin{array}{cc}u & b \\ v & d \end{array} \right|}{ \left|\begin{array}{cc}a & b \\ c & d \end{array} \right|}
Fit a second-degree parabola to the following data:
\begin{array}{c|cccccccccccc} x & y \\ \hline 0 & 1 \\ 1 & 3 \\ 2 & 4 \\ 3 & 5 \\ 4 & 6 \\ \hline \end{array}
Solution
Let Y = a+ bX + cX^2 be the second-degree parabola, and we have to determine a, b and c. Normal equations for the second-degree parabola are
\begin{array}{ccccccccccccc} \displaystyle \sum y & = & \displaystyle na & + & \displaystyle b \sum x & + & \displaystyle c \sum x^2 \\ \displaystyle \sum xy & = & \displaystyle a \sum x & + & \displaystyle b \sum x^2 & + & \displaystyle c \sum x^3 \\ \displaystyle \sum x^2y & = & \displaystyle a \sum x^2 & + & \displaystyle b \sum x^3 & + & \displaystyle c \sum x^4 \\ \end{array}
To solve the above normal equations, we need \displaystyle \sum y, \displaystyle \sum x, \displaystyle \sum xy, \displaystyle \sum x^2 y, \displaystyle \sum x^2, \displaystyle \sum x^3, and \displaystyle \sum x^4, which are obtained from the following table:
\begin{array}{ccccccccc} i & x & y & xy & x^2 & x^2y & x^3 & x^4 \\ \hline 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 2 & 1 & 3 & 3 & 1 & 3 & 1 & 1 \\ 3 & 2 & 4 & 8 & 4 & 16 & 8 & 16 \\ 4 & 3 & 5 & 15 & 9 & 45 & 27 & 81 \\ 5 & 4 & 6 & 24 & 16 & 96 & 64 & 256 \\ \hline n = 5& \displaystyle \sum x = 10 & \displaystyle \sum y = 19 & \displaystyle \sum xy = 50 & \displaystyle \sum x^2 = 30 & \displaystyle \sum x^2y = 160 & \displaystyle \sum x^3 = 100 & \displaystyle \sum x^4 = 354\\ \hline \end{array}
Substituting the values of \displaystyle \sum y, \sum x, \displaystyle \sum xy, \displaystyle \sum x^2 y, $x^2 $, \sum x^3, and \displaystyle \sum x^4 into the above normal equations, we have:
\begin{array}{ccccccccccccc} \displaystyle \sum y & = & \displaystyle na & + & \displaystyle b \sum x & + & \displaystyle c \sum x^2 \\ \displaystyle \sum xy & = & \displaystyle a \sum x & + & \displaystyle b \sum x^2 & + & \displaystyle c \sum x^3 \\ \displaystyle \sum x^2y & = & \displaystyle a \sum x^2 & + & \displaystyle b \sum x^3 & + & \displaystyle c \sum x^4 \\ \end{array} \begin{array}{ccccccccccccc} 19 & = & 5 a & + & 10 b & + & 30 c & & (1) \\ 50 & = & 10 a & + & 30 b & + & 100 c & & (2) \\ 160 & = & 30 a & + & 100 b & + & 354 c & & (3) \\ \end{array}
Now, we solve equations (1), (2) and (3).
Multiplying equation (1) by 2, we get
\begin{array}{ccccccccccccc} 38 & = & 10 a &+& 20 b &+& 60 c && (4) \end{array}
Subtracting equation (4) from equation (2), we get
\begin{array}{ccccccccccccc} 50 & = & 10 a & + & 30 b & + & 100 c & & (2) \\ 38 & = & 10 a & + & 20 b & + & 60 c & & (4) \\ \hline 12 & = & 0 a & + & 10 b & + & 40 c & & (5) \\ \end{array}
Multiplying equation (2) by 3, we get
\begin{array}{ccccccccccccc} 150 & = & 30 a &+& 90 b &+& 300 c && (6) \end{array}
Subtracting equation (6) from equation (3), we get
\begin{array}{ccccccccccccc} 160 & = & 30 a & + & 100 b & + & 354 c & & (3) \\ 150 & = & 30 a & + & 90 b & + & 300 c & & (6)\\ \hline 10 & = & 0 a & + & 10 b & + & 54 c & & (7) \\ \end{array}
Now we solve equation (5) and (7).
Subtracting equation (5) from equation (7), we get
\begin{array}{ccccccccccccc} 12 & = & 0 a & + & 10 b & + & 40 c & & (5) \\ 10 & = & 0 a & + & 10 b & + & 54 c & & (7) \\ \hline 2 & = & & & 0 b & - & 14 c & & \\ \end{array}
\begin{array}{cclllllllllllll} & 2 & = & - 14c \\ & c& = & -2/14 \\ \Rightarrow & c& = & -0.1429 \\ \end{array}
Substituting the value of \mathrm{c} in equation (7), we get
\begin{array}{ccclllllllllll} & 10 & = & 10 b &+ & 54 (-0.1429 ) \\ & 10 & = & 10 b &- & 7.7166 \\ & 10 b & = & 10 &+ & 7.7166 \\ \Rightarrow & b & = & 1.77166 \\ \end{array}
Substituting the value of b and a in equation (1), we get
\begin{array}{ccccccccccccc} & 19 & = & 5 a & + & 10 (1.77166) & + & 30 (-0.1429) \\ & 19 & = & 5 a & + & 17.717 & - & 4.287 \\ \Rightarrow & a & = & 1.114 \end{array}
Thus, the second degree of parabola of best fit is
Y=1.114+1.7717 X-0.1429 X^{2}
X | Y |
---|---|
0 | 1 |
1 | 3 |
2 | 4 |
3 | 5 |
4 | 6 |
##
## Call:
## lm(formula = Y ~ X + I(X^2), data = data)
##
## Residuals:
## 1 2 3 4 5
## -0.11429 0.25714 -0.08571 -0.14286 0.08571
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.11429 0.22497 4.953 0.0384 *
## X 1.77143 0.26650 6.647 0.0219 *
## I(X^2) -0.14286 0.06389 -2.236 0.1548
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.239 on 2 degrees of freedom
## Multiple R-squared: 0.9923, Adjusted R-squared: 0.9846
## F-statistic: 128.5 on 2 and 2 DF, p-value: 0.007722
# Calculate the predicted Y for a range of X
predicted_values <- predict(
quadratic_model,
newdata = data.frame(X = seq(min(X),
max(X),
length.out = 5)
)
)
# Plot the data points and the predicted Y values
plot(
data$X,
data$Y,
main = "Y vs. X",
xlab = "X",
ylab = "Y"
)
lines(seq(min(X),
max(X),
length.out = 5),
predicted_values, col = "red"
)
Fit the power curve Y = a X^b to the following data:
\begin{array}{c|cccccccccccc} x & y \\ \hline 6 & 9 \\ 2 & 11 \\ 10 & 12 \\ 5 & 8 \\ 8 & 7 \\ \hline \end{array}
Solution
Let the power curve be Y=aX^b, and the normal equations for estimating a and b are:
\begin{array}{ccccccccccccc} \displaystyle \sum u & = & n A & + & \displaystyle b\sum v \\ \displaystyle \sum uv & = & \displaystyle A \sum v & + & \displaystyle b \sum v^{2} \end{array}
where u=\log y, v= \log x, and A=\log a.
Note: Here we are using \log with base 10.
To find the values of a and b from the above normal equations, we require \displaystyle \sum u, \displaystyle \sum v, \displaystyle \sum uv, and \displaystyle \sum v^2, which are calculated in the following table:
\begin{array}{ccccccccc} i & x & y & u=\log y & v=\log x & uv & v^2 \\ \hline 1 & 6 & 9 & 0.954242509 & 0.77815125 & 0.742545002 & 0.605519368 \\ 2 & 2 & 11 & 1.041392685 & 0.301029996 & 0.313490435 & 0.090619058 \\ 3 & 10 & 12 & 1.079181246 & 1 & 1.079181246 & 1 \\ 4 & 5 & 8 & 0.903089987 & 0.698970004 & 0.631232812 & 0.488559067 \\ 5 & 8 & 7 & 0.84509804 & 0.903089987 & 0.763199578 & 0.815571525 \\ \hline n = 5& \displaystyle \sum x = 31 & \displaystyle \sum y = 47 & \displaystyle \sum u = 4.823004468 & \displaystyle \sum v= 3.681241237 & \displaystyle \sum uv = 3.529649074 & \displaystyle \sum v^2 = 3.000269018 \\ \hline \end{array}
Substituting the values \displaystyle \sum u=4.8230, \displaystyle \sum v =3.6812, \displaystyle \sum uv =3.5296 and \displaystyle \sum v^{2}=3.0003 into the above normal equations, we obtain:
\begin{array}{ccccccccccccc} 4.8230 & = & 5 A & + & 3.6812 b & & (1) \\ 3.5296 & = & 3.6812 A & + & 3.0003 b & & (2) \end{array}
Now, we solve the equation (1) and equation (2).
Multiplying equation (1) by 3.6812 and equation (3) by 5, i.e.,
\begin{array}{cccllllllllllc} 4.8230 & = 5 A & + & 3.6812 b && (1) \times 3.6812 \\ 3.5296 & = 3.6812 A & + & 3.0003 b && (2) \times 5 \end{array}
we have
\begin{array}{ccccccccccccc} 17.7544 & = & 18.4060 A & + & 13.5512 b & & (3) \\ 17.6480 & = & 18.4060 A & + & 15.0015 b & & (4) \end{array}
Subtracting equation (4) from equation (3), we have
\begin{array}{ccccccccccccc} & 0.1064 & = & -1.4503 b \\ \Rightarrow & b & = & -0.0734 \end{array}
Substituting the value of b in equation (1), we get
\begin{array}{ccccccccccccc} 4.8230 & = & 5 A & + & 3.6812 (-0.0734) \\ A & = & 1.0186 \end{array}
Now a = \log^{-1} A= \log^{-1} (1.0186) = 10^{1.0186} = 10.4376
Thus, the power curve of the best fit is Y=10.4376 X^{-0.0734}.
X | Y |
---|---|
6 | 9 |
2 | 11 |
10 | 12 |
5 | 8 |
8 | 7 |
##
## Call:
## lm(formula = log10(Y) ~ log10(X), data = data)
##
## Residuals:
## 1 2 3 4 5
## -0.007283 0.044852 0.133936 -0.064247 -0.107259
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.01863 0.15679 6.497 0.0074 **
## log10(X) -0.07339 0.20240 -0.363 0.7410
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.109 on 3 degrees of freedom
## Multiple R-squared: 0.04198, Adjusted R-squared: -0.2774
## F-statistic: 0.1315 on 1 and 3 DF, p-value: 0.741
## (Intercept)
## 10.43836
## log10(X)
## -0.07338735
Fit the power curve Y = a X^b to the following data:
\begin{array}{c|cccccccccccc} x & y \\ \hline 0.135 & 22000 \\ 0.67 & 13000 \\ 2.45 & 8000 \\ 75 & 2550 \\ 1775 & 900 \\ \hline \end{array}
Solution
Let the power curve be Y=aX^b, and the normal equations for estimating a and b are:
\begin{array}{ccccccccccccc} \displaystyle \sum u & = & n A & + & \displaystyle b\sum v \\ \displaystyle \sum uv & = & \displaystyle A \sum v & + & \displaystyle b \sum v^{2} \end{array}
where u=\log y, v= \log x, and A=\log a.
Note: Here we are using \log with base 10.
To find the values of a and b from the above normal equations, we require \displaystyle \sum u, \displaystyle \sum v, \displaystyle \sum uv, and \displaystyle \sum v^2, which are calculated in the following table:
\begin{array}{ccccccccc} i & x & y & u=\log y & v=\log x & uv & v^2 \\ \hline 1 & 0.135 & 22000 & 4.342422681 & -0.869666232 & -3.776458368 & 0.756319354 \\ 2 & 0.67 & 13000 & 4.113943352 & -0.173925197 & -0.715518409 & 0.030249974 \\ 3 & 2.45 & 8000 & 3.903089987 & 0.389166084 & 1.518950247 & 0.151450241 \\ 4 & 75 & 2550 & 3.40654018 & 1.875061263 & 6.387471535 & 3.515854741 \\ 5 & 1775 & 900 & 2.954242509 & 3.249198357 & 9.598919909 & 10.55728997 \\ \hline n = 5& \displaystyle \sum x = 1853.255 & \displaystyle \sum y = 46450 & \displaystyle \sum u = 18.72023871 & \displaystyle \sum v= 4.469834276 & \displaystyle \sum uv = 13.01336491 & \displaystyle \sum v^2 = 15.01116428 \\ \hline \end{array}
Substituting the values of \displaystyle \sum u=18.72023871, \displaystyle \sum v=4.469834276,\sum uv= 13.01336491 and \displaystyle \sum v^2=15.01116428 into the above normal equations, we obtain:
\begin{array}{ccccccccccccc} 1853.255 & = & 5 A & + & 4.469834276 b & & (1) \\ 13.01336491 & = & 4.469834276 A & + & 15.01116428 b & & (2) \end{array}
These two equations can be solved for A and b using Cramer’s rule:
A = \dfrac{\left| \begin{array}{cc} \color{red}{ \sum u} & \sum v \\ \color{red}{\sum uv} & \sum v^{2} \end{array} \right|} {\left| \begin{array}{cc} n & \sum v \\ \sum v & \sum v^{2} \end{array} \right|} = \dfrac{\left| \begin{array}{cc} \color{red}{18.72023871} & 4.469834276 \\ \color{red}{13.01336491} & 15.01116428 \end{array} \right|} {\left| \begin{array}{cc} 5 & 4.469834276\\ 4.469834276 & 15.01116428 \end{array} \right|} = 4.0461
Now a = \log^{-1} (A) = \log^{-1} (4.0461) =10^{4.0461} = 11120 and
b = \dfrac{\left| \begin{array}{cc} 5 & \color{red}{18.72023871} \\ 4.469834276 & \color{red}{13.01336491} \end{array} \right|} {\left| \begin{array}{cc} 5 & 4.469834276\\ 4.469834276 & 15.01116428 \end{array} \right|} = -0.3379
Thus, the power curve of the best fit is Y=11120 X^{-0.3379}.
Mass | RPM |
---|---|
0.135 | 22000 |
0.670 | 13000 |
2.450 | 8000 |
75.000 | 2550 |
1775.000 | 900 |
##
## Call:
## lm(formula = log10(RPM) ~ log10(Mass), data = data)
##
## Residuals:
## 1 2 3 4 5
## 0.002468 0.009070 -0.011523 -0.006010 0.005994
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.046107 0.005161 784.0 4.58e-09 ***
## log10(Mass) -0.337886 0.002979 -113.4 1.51e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.009886 on 3 degrees of freedom
## Multiple R-squared: 0.9998, Adjusted R-squared: 0.9997
## F-statistic: 1.287e+04 on 1 and 3 DF, p-value: 1.51e-06
## [1] 12.090791 6.673574 6.342661 6.156732 6.028124
## (Intercept)
## 10.43836
## log10(X)
## -0.07338735
Fit the exponential curve Y=ab^X to the following data:
\begin{array}{c|cccccccccccc} x & y \\ \hline 2 & 1 \\ 4 & 3 \\ 6 & 6 \\ 8 & 12 \\ 10 & 24 \\ \hline \end{array}
Solution
Let the exponential curve be Y=ab^X, and the normal equations for estimating a and b are
\begin{array}{ccccccccccccc} \displaystyle \sum u & = & n A & + & \displaystyle B \sum x \\ \displaystyle \sum ux & = & \displaystyle A \sum x & + & \displaystyle B \sum x^{2} \end{array}
where a=\log^{-1}(A)= 10^{A} and b= \log^{-1}(B)=10^{B}.
Note: Here we are using \log with base 10.
To find the values of a and b from the above normal equations, we require \displaystyle \sum u, \displaystyle \sum x, \displaystyle \sum ux and \displaystyle \sum x^{2}, which are being calculated in the following table:
\begin{array}{ccccccccc} i & x & y & u=\log y & ux & x^2 \\ \hline 1 & 2 & 1 & 0 & 0 & 4 \\ 2 & 4 & 3 & 0.477121255 & 1.908485019 & 16 \\ 3 & 6 & 6 & 0.77815125 & 4.668907502 & 36 \\ 4 & 8 & 12 & 1.079181246 & 8.633449968 & 64 \\ 5 & 10 & 24 & 1.380211242 & 13.80211242 & 100 \\ \hline n = 5& \displaystyle \sum x = 30 & \displaystyle \sum y = 46 & \displaystyle \sum u = 3.714664993 & \displaystyle \sum ux = 29.01295495 & \displaystyle \sum x^2 = 220 \\ \hline \end{array}
Substituting the values of \displaystyle \sum u , \displaystyle \sum x, \sum ux and \displaystyle \sum x^{2} in the above normal equations, we get
\begin{array}{ccccccccccccc} 3.7147 & = & 5 A & + & 30 B & & (1) \\ 29.013 & = & 30 A & + & 220 B & & (2) \end{array}
Now, we solve the equation (1) and equation (2).
Multiplying equation (1) by 6, i.e.,
\begin{array}{ccccccccccccc} 3.7147 & = & 5 A &+& 30 B & & (1) \times 6 \\ \end{array}
we have
\begin{array}{ccccccccccccc} 22.2882 & = & 30 A & + & 180 B & & (3) \\ 29.013 & = & 30 A & + & 220 B & & (2) \end{array}
Subtracting equation (2) from equation (3), we have
\begin{array}{ccccccccccccc} & 6.7248 & = & 40 B \\ \Rightarrow & B & = & 0.1681 \end{array}
Substituting the value of B in equation (1), we get
A=-0.26566
Now a = \log^{-1} A= \log^{-1} (-0.26566) = 10^{-0.26566} = 0.5424
and
b = \log^{-1} B= \log^{-1} (0.1681) = 10^{0.1681} = 1.4727
Thus, the exponential curve of the best fit is Y=0.5424(1.4727)^{X}.
X | Y |
---|---|
2 | 1 |
4 | 3 |
6 | 6 |
8 | 12 |
10 | 24 |
##
## Call:
## lm(formula = log10(Y) ~ X, data = data)
##
## Residuals:
## 1 2 3 4 5
## -7.044e-02 7.044e-02 3.522e-02 3.469e-17 -3.522e-02
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.26581 0.06744 -3.942 0.029106 *
## X 0.16812 0.01017 16.537 0.000481 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0643 on 3 degrees of freedom
## Multiple R-squared: 0.9891, Adjusted R-squared: 0.9855
## F-statistic: 273.5 on 1 and 3 DF, p-value: 0.0004813
## [1] 1.176079 2.550849 5.532647 12.000000 26.027323
## (Intercept)
## 0.5422359
## X
## 1.472733
Fit an exponential curve Y = a e^{bX} to the following data:
\begin{array}{c|cccccccccccc} x & y \\ \hline 0 & 1481.66 \\ 2 & 2333.32 \\ 4 & 3501.39 \\ 6 & 5938.71 \\ 8 & 8838.60 \\ \hline \end{array}
Solution
Let the exponential curve be Y=a e^{bX}, and the normal equations for estimating a and b are
\begin{array}{ccccccccccccc} \displaystyle \sum u & = & n A & + & \displaystyle B \sum x \\ \displaystyle \sum ux & = & \displaystyle A \sum x & + & \displaystyle B \sum x^{2} \end{array}
where a=\log^{-1}(A) and b= \dfrac{B}{\log e}.
Note: Here we are using \log with base 10.
To find the values of a and b from the above normal equations, we require \displaystyle \sum u, \sum x, \displaystyle \sum ux and \displaystyle \sum x^{2}, which are being calculated in the following table:
\begin{array}{ccccccccc} i & x & y & u=\log y & ux & x^2 \\ \hline 1 & 0 & 1481.66 & 3.170748557 & 0 & 0 \\ 2 & 2 & 2333.32 & 3.367974304 & 6.735948607 & 4 \\ 3 & 4 & 3501.39 & 3.544240487 & 14.17696195 & 16 \\ 4 & 6 & 5938.71 & 3.773692118 & 22.64215271 & 36 \\ 5 & 8 & 8838.6 & 3.94638348 & 31.57106784 & 64 \\ \hline n=5 & \displaystyle \sum x = 20 & \displaystyle \sum y = 22093.68 & \displaystyle \sum u = 17.80303895 & \displaystyle \sum ux = 75.1261311 & \displaystyle \sum x^2 = 120 \\ \hline \end{array}
Substituting the values of \displaystyle \sum u , \sum x , \sum ux and \displaystyle \sum x^{2} in the above normal equations, we get
\begin{array}{ccccccccccccc} 17.80303895 & = & 5 A & + & 20 B & (1) \\ 75.1261311 & = & 20 A & + & 120 B & (2) \end{array}
By solving these equations as simultaneous equations, we get
\begin{array}{ccccccccccccc} A & =& 3.1692 \\ B & = & 0.09784 \end{array}
Now a = \log^{-1} A= \log^{-1} (3.1692) = 10^{3.1692} = 1476.4
and
b = \dfrac{0.09784}{\log 2.71828} = \dfrac{0.09784}{0.43429} = 0.2253
Thus, the exponential curve of the best fit is Y=1476.4 \cdot e^{0.2253X}.
X | Y |
---|---|
0 | 1481.66 |
2 | 2333.32 |
4 | 3501.39 |
6 | 5938.71 |
8 | 8838.60 |
##
## Call:
## lm(formula = log(Y) ~ X, data = data)
##
## Residuals:
## 1 2 3 4 5
## 0.003542 0.007058 -0.037687 0.040032 -0.012945
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.297376 0.025506 286.10 9.42e-08 ***
## X 0.225307 0.005206 43.27 2.72e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03293 on 3 degrees of freedom
## Multiple R-squared: 0.9984, Adjusted R-squared: 0.9979
## F-statistic: 1873 on 1 and 3 DF, p-value: 2.716e-05
## [1] 1476.421 2316.909 3635.865 5705.669 8953.757
## (Intercept)
## 1476.421
## X
## 0.2253065
Consider the following data set: \begin{array}{c|cccccccccccc} x & y \\ \hline 2 & 1 \\ 4 & 2 \\ 6 & 3 \\ 8 & 4 \\ 10 & 5 \\ \hline \end{array}
Consider fit the power curve Y = a X^b to the following data: \begin{array}{c|cccccccccccc} x & y \\ \hline 5 & 2 \\ 6 & 5 \\ 9 & 8 \\ 8 & 11 \\ 11 & 15 \\ \hline \end{array}
Consider fit the power curve Y = ab^X to the following data: \begin{array}{c|cccccccccccc} x & y \\ \hline 1 & 8 \\ 2 & 15 \\ 3 & 33 \\ 4 & 65 \\ 5 & 130 \\ \hline \end{array}
Consider fit the Exponential curve Y = ae^{bX} to the following data: \begin{array}{c|cccccccccccc} x & y \\ \hline 1 & 5 \\ 2 & 10 \\ 4 & 30 \\ \hline \end{array}
Fit a second-degree parabola to the following data:
\begin{array}{c|cccccccccccc} x & y \\ \hline 2 & 1 \\ 4 & 2 \\ 6 & 3 \\ 8 & 4 \\ 10 & 5 \\ \hline \end{array}
Let Y = a+ bX + cX^2 be the second degree parabola and we have to determine a, b and c. The normal equations for the second-degree parabola are:
\begin{array}{ccccccccccccc} \displaystyle \sum y & = & na & + & \displaystyle b \sum x & + & \displaystyle c \sum x^2 \\ \displaystyle \sum xy & = & \displaystyle a \sum x & + & \displaystyle b \sum x^2 & + & \displaystyle c \sum x^3 \\ \displaystyle \sum x^2y & = & \displaystyle a \sum x^2 & + & \displaystyle b \sum x^3 & + & \displaystyle c \sum x^4 \\ \end{array}
To solve above normal equations, we need \displaystyle \sum y, \displaystyle \sum x, \displaystyle \sum xy, \displaystyle \sum x^2 y, \displaystyle \sum x^2, \displaystyle \sum x^3 and \displaystyle \sum x^4, which are obtained from following table:
\begin{array}{ccccccccc} i & x & y & xy & x^2 & x^2y & x^3 & x^4 \\ \hline 1 & 2 & 1 & 2 & 4 & 4 & 8 & 16 \\ 2 & 4 & 2 & 8 & 16 & 32 & 64 & 256 \\ 3 & 6 & 3 & 18 & 36 & 108 & 216 & 1296 \\ 4 & 8 & 4 & 32 & 64 & 256 & 512 & 4096 \\ 5 & 10 & 5 & 50 & 100 & 500 & 1000 & 10000 \\ n = 5& \displaystyle \sum x = 30 & \displaystyle \sum y = 15 & \displaystyle \sum xy = 110 & \displaystyle \sum x^2 = 220 & \displaystyle \sum x^2y = 900 & \displaystyle \sum x^3 = 1800 & \displaystyle \sum x^4 = 15664 \\ \hline \end{array}
Substituting the values of \displaystyle \sum y, \sum x, \displaystyle \sum xy, \displaystyle \sum x^2 y, \displaystyle \sum x^2,\sum x^{3} and \displaystyle \sum x^{4} into the above normal equations, we have
\begin{array}{ccccccccccccc} \displaystyle \sum y & = & na & + & \displaystyle b \sum x & + & \displaystyle c \sum x^2 \\ \displaystyle \sum xy & = & \displaystyle a \sum x & + & \displaystyle b \sum x^2 & + & \displaystyle c \sum x^3 \\ \displaystyle \sum x^2y & = & \displaystyle a \sum x^2 & + & \displaystyle b \sum x^3 & + & \displaystyle c \sum x^4 \\ \end{array}
\begin{array}{ccccccccc} 15 & = & 5 a & + & 30 b & + & 220 c & & (1) \\ 110 & = & 30 a & + & 220 b & + & 1800 c & & (2) \\ 900 & = & 220 a & + & 1800 b & + & 15664 c & & (3) \\ \end{array}
The values of a, b and c are obtained by solving equations using Cramer’s rule:
a= \dfrac{\left| \begin{array}{cccc} \color{red}{\sum y} & \sum x & \sum x^{2} \\ \color{red}{\sum xy} & \sum x^{2} & \sum x^{3} \\ \color{red}{\sum x^{2}y} & \sum x^{3} & \sum x^{4} \end{array} \right|}{\left| \begin{array}{cccc} n & \sum x & \sum x^{2} \\ \sum x & \sum x^{2} & \sum x^{3} \\ \sum x^{2} & \sum x^{3} & \sum x^{4} \end{array} \right|}
b= \dfrac{\left| \begin{array}{cccc} n & \color{red}{\sum y} & \sum x^{2} \\ \sum x & \color{red}{\sum xy} & \sum x^{3} \\ \sum x^{2} & \color{red}{\sum x^{2}y} & \sum x^{4} \end{array} \right|}{\left| \begin{array}{cccc} n & \sum x & \sum x^{2} \\ \sum x & \sum x^{2} & \sum x^{3} \\ \sum x^{2} & \sum x^{3} & \sum x^{4} \end{array} \right|} and c= \dfrac{\left| \begin{array}{cccc} n & \sum x & \color{red}{\sum y} \\ \sum x & \sum x^{2} & \color{red}{\sum xy}\\ \sum x^{2} & \sum x^{3} & \color{red}{\sum x^{2}y} \end{array} \right|}{\left| \begin{array}{cccc} n & \sum x & \sum x^{2} \\ \sum x & \sum x^{2} & \sum x^{3} \\ \sum x^{2} & \sum x^{3} & \sum x^{4} \end{array} \right|} In order to further solve a, b and c, we need to know how to solve a three-by-three determinant.
Consider the determinant
{\left| \begin{array}{cccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right|} The formula to solve a three-by-three determinant using the co-factor expansion is as follows:
{\left| \begin{array}{cccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right|} = a \left| \begin{array}{cccc} e & f \\ h & i \end{array} \right| - b \left| \begin{array}{cccc} d & f \\ g & i \end{array} \right| + c \left| \begin{array}{cccc} d & e \\ g & h \end{array} \right|
With these values of a, b and c, the second degree parabola Y=a+bX+cX^{2} is the best fit.
a = \dfrac{\left| \begin{array}{cccc} \color{red}{15} & 30 & 220 \\ \color{red}{110} & 220 & 1800 \\ \color{red}{900} & 1800 & 15664 \end{array} \right|}{\left| \begin{array}{cccc} 5 & 30 & 220 \\ 30 & 220 & 1800 \\ 220 & 1800 & 15664 \end{array} \right|} = 0 \\
Now, we have {\left| \begin{array}{cccc} \color{blue}{15} & \color{blue}{30} & \color{blue}{220} \\ 110 & 220 & 1800 \\ 900 & 1800 & 15664 \end{array} \right|} = \color{blue}{15} \left| \begin{array}{cccc} 220 & 1800 \\ 1800 & 15664 \end{array} \right| - \color{blue}{30} \left| \begin{array}{cccc} 110 & 1800 \\ 900 & 16554 \end{array} \right| + \color{blue}{220} \left| \begin{array}{cccc} 110 & 220 \\ 900 & 1800 \end{array} \right| = 0 and {\left| \begin{array}{cccc} \color{blue}{5} & \color{blue}{30} & \color{blue}{220} \\ 30 & 220 & 1800 \\ 220 & 1800 & 15664 \end{array} \right|} =\color{blue}{5} \left| \begin{array}{cccc} 220 & 1800 \\ 1800 & 15664 \end{array} \right| - \color{blue}{30} \left| \begin{array}{cccc} 110 & 1800 \\ 990 & 16554 \end{array} \right| + \color{blue}{220} \left| \begin{array}{cccc} 110 & 220 \\ 900 & 1800 \end{array} \right| = 44800
b= \dfrac{\left| \begin{array}{cccc} 5 & \color{red}{15} & 220 \\ 30 & \color{red}{110} & 1800 \\ 220 & \color{red}{900} & 15664 \end{array} \right|}{\left| \begin{array}{cccc} 5 & 30 & 220 \\ 30 & 220 & 1800 \\ 220 & 1800 & 15664 \end{array} \right|} = \frac{1}{2} and c= \dfrac{\left| \begin{array}{cccc} 5 & 30 & \color{red}{15} \\ 30 & 220 & \color{red}{110} \\ 220 & 1800 & \color{red}{990} \end{array} \right|}{\left| \begin{array}{cccc} 5 & 30 & 220 \\ 30 & 220 & 1800 \\ 220 & 1800 & 15664 \end{array} \right|} = 0
Thus, the second degree of parabola of best fit is
Y= X/2
A, B
Correct order: 1. Decide the model to fit in the dataset. 2. Find the corresponding summations for the normal function. 3. Using Cramer’s Rule to solve the linear system. 4. Find the determinent of each corresponding matrix and get the values of each coefficients.
0.5
0
Fit the power curve Y = a X^b to the following data:
\begin{array}{c|cccccccccccc} x & y \\ \hline 5 & 2 \\ 6 & 5 \\ 9 & 8 \\ 8 & 11 \\ 11 & 15 \\ \hline \end{array}
Let the power curve be Y=aX^b, and the normal equations for estimating a and b are
\begin{array}{ccccccccccccc} \displaystyle \sum u & = & n A & + & \displaystyle b\sum v \\ \displaystyle \sum uv & = & \displaystyle A \sum v & + & \displaystyle b \sum v^{2} \end{array}
where u=\log y, v= \log x and A=\log a.
Note: Here we are using \log with base 10.
To find the values of a and b from the above normal equations, we require \displaystyle \sum u , \displaystyle \sum v, \displaystyle \sum uv and \displaystyle \sum v^{2} ,which are being calculated in the following table:
\begin{array}{ccccccccc} i & x & y & u=\log y & v=\log x & uv & v^2 \\ \hline 1 & 5 & 2 & 0.301029996 & 0.698970004 & 0.210410937 & 0.488559067 \\ 2 & 6 & 5 & 0.698970004 & 0.77815125 & 0.543904383 & 0.605519368 \\ 3 & 9 & 8 & 0.903089987 & 0.954242509 & 0.861766855 & 0.910578767 \\ 4 & 8 & 11 & 1.041392685 & 0.903089987 & 0.940471306 & 0.815571525 \\ 5 & 11 & 15 & 1.176091259 & 1.041392685 & 1.224772834 & 1.084498725 \\ \hline n = 5& \displaystyle \sum x = 39 & \displaystyle \sum y = 41 & \displaystyle \sum u = 4.120573931 & \displaystyle \sum v= 4.375846436 & \displaystyle \sum uv = 3.781326316 & \displaystyle \sum v^2 = 3.904727452 \\ \hline \end{array}
Substituting the values of \displaystyle \sum u=4.1206, \displaystyle \sum v=4.3759,\sum uv=3.7814 and \displaystyle \sum v^2=3.9048 into the above normal equations, we obtain
\begin{array}{ccccccccc} 4.1206 & = & 5 A & + & 4.3759 b & & (1) \\ 3.7184 & = & 4.3759 A & + & 3.9048 b & & (2) \end{array}
These two equations can be solved for a and b using Cramer’s rule:
A = \dfrac{\left| \begin{array}{cc} \color{red}{ \sum u} & \sum v \\ \color{red}{\sum uv} & \sum v^{2} \end{array} \right|} {\left| \begin{array}{cc} n & \sum v \\ \sum v & \sum v^{2} \end{array} \right|} = \dfrac{\left| \begin{array}{cc} \color{red}{4.1206} & 4.3759 \\ \color{red}{3.7184} & 3.9048 \end{array} \right|} {\left| \begin{array}{cc} 5 & 4.3759 \\ 4.3759 & 3.9048 \end{array} \right|} = −0.4571
Now a = \log^{-1} (A) = \log^{-1} (−0.4571) = 10^{0.3491} = 0.3491 and b = \dfrac{\left| \begin{array}{cc} 5 & \color{red}{4.3759} \\ 4.3759 & \color{red}{3.9048} \end{array} \right|} {\left| \begin{array}{cc} 5 & 4.3759 \\ 4.3759 & 3.9048 \end{array} \right|} = 1.4964
Thus, the power curve of the best fit is Y=0.3491 X^{1.4964}.
C
A, C
3.905
0.0670
Fit the power curve Y = a b^X to the following data:
\begin{array}{c|cccccccccccc} x & y \\ \hline 1 & 8 \\ 2 & 15 \\ 3 & 33 \\ 4 & 65 \\ 5 & 130 \\ \hline \end{array}
Let the exponential curve be Y=ab^x, and the normal equations for estimating a and b are
\begin{array}{ccccccccccccc} \displaystyle \sum u & = & n A & + & \displaystyle B \sum x \\ \displaystyle \sum ux & = & \displaystyle A \sum x & + & \displaystyle B \sum x^{2} \end{array}
where a=\log^{-1}(A) and b= \log^{-1}(B).
Note: Here we are using \log with base 10.
To find the values of a and b from the above normal equations, we require \displaystyle \sum u, \displaystyle \sum x, \displaystyle \sum ux and \displaystyle \sum x^{2}, which are being calculated in the following table:
\begin{array}{ccccccccc} i & x & y & u=\log y & ux & x^2 \\ \hline 1 & 1 & 8 & 0.903089987 & 0.903089987 & 1 \\ 2 & 2 & 15 & 1.176091259 & 2.352182518 & 4 \\ 3 & 3 & 33 & 1.51851394 & 4.55554182 & 9 \\ 4 & 4 & 65 & 1.812913357 & 7.251653427 & 16 \\ 5 & 5 & 130 & 2.113943352 & 10.56971676 & 25 \\ \hline n = 5 & \displaystyle \sum x = 15 & \displaystyle \sum y = 251 & \displaystyle \sum u = 7.524551895 & \displaystyle \sum ux = 25.63218451 & \displaystyle \sum x^2 = 55 \\ \hline \end{array}
Substituting the values of \displaystyle \sum u, \sum x, \sum ux and \displaystyle \sum x^{2} into the above normal equations, we get
\begin{array}{ccccccccc} 7.5246 & = & 5 A & + & 15 B & & (1) \\ 25.6322 & = & 15 A & + & 55 B & & (2) \end{array}
Now, we solve the equation (1) and equation (2).
Multiplying equation (1) by 3, i.e.,
\begin{array}{ccccccccc} 22.5738 & = & 15 A &+& 45 B && (1) \times 3 \\ \end{array}
we have
\begin{array}{ccccccccc} 22.5738 & = & 15 A & +& 45 B && (3) \\ 25.6322 & = & 15 A &+& 55 B && (2) \end{array}
Subtracting equation (2) from equation (3), we have
\begin{array}{ccccccccc} & 3.0584 & = & -10 B \\ \Rightarrow & B & = & -0.30584 \end{array}
Substituting the value of B in equation (1), we get
A=2.4224
Now a = \log^{-1} A= \log^{-1} (2.4224) = 10^{2.4224}=264.5087
and
b = \log^{-1} B= \log^{-1} (-0.30584) = 10^{-0.30584} = 0.4494
Thus, the exponential curve of the best fit is Y=264.5087 \cdot ( 0.4494 )^{X}.
C
A
80.8728
32811.38
Fit an exponential curve Y = a e^{bX} to the following data:
\begin{array}{c|cccccccccccc} x & y \\ \hline 1 & 5 \\ 2 & 10 \\ 4 & 30 \\ \hline \end{array}
Let the exponential curve be Y=a e^{bX}, and the normal equations for estimating a and b are:
\begin{array}{ccccccccccccc} \displaystyle \sum u & = & n A & + & \displaystyle B \sum x \\ \displaystyle \sum ux & = & \displaystyle A \sum x & + & \displaystyle B \sum x^{2} \end{array}
where a=\log^{-1}(A) and b= \dfrac{B}{\log e}.
Note: Here we are using \log with base 10.
To find the values of a and b from the above normal equations, we require \displaystyle \sum u , \sum x, \displaystyle \sum ux and \displaystyle \sum x^{2}, which are being calculated in the following table:
\begin{array}{ccccccccc} i & x & y & u=\log y & ux & x^2 \\ \hline 1 & 1 & 5 & 0.698970004 & 0.698970004 & 1 \\ 2 & 2 & 10 & 1 & 2 & 4 \\ 3 & 4 & 30 & 1.477121255 & 5.908485019 & 16 \\ \hline n= 3& \displaystyle \sum x = 7 & \displaystyle \sum y = 45 & \displaystyle \sum u = 3.176091259 & \displaystyle \sum ux = 8.607455023 & \displaystyle \sum x^2 = 21 \\ \hline \end{array}
Substituting the values of \displaystyle \sum u , \sum x , \sum ux and \displaystyle \sum x^{2} into the above normal equations, we get
\begin{array}{ccccccccc} 3.1761 & = & 3 A & + & 7 B & & (1) \\ 8.6075 & = & 7 A & + & 21 B & & (2) \end{array}
By solving these equations as simultaneous equations, we get
\begin{array}{ccccccccc} A & = & 0.4604 \\ B & = & 0.2564 \end{array}
Now a = \log^{-1} A= \log^{-1} (0.4604) = 10^{0.4604} = 2.8867
and
b = \dfrac{0.2564}{\log 2.71828} = \dfrac{0.2564}{0.43429} = 0.5904
Thus, the exponential curve of the best fit is Y=2.8867 \cdot e^{0.5904X}.
B
C
0.5904
0.7884